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1 Introduction to Statistical Thermodynamics
Bulk (macroscale)
properties - pressure, enthalpy,
entropy, temperature,
conductivity, melting and boiling
point, ...

Molecular (microscale)
properties - molecular energy
levels, vibration frequencies,
molecular mass, dipole, ...

From the usual thermodynamics we know such properties such as entropy, internal energy
and pressure. However, a lot of these properties are only observed in larger systems, e.g. how
do we define the melting point of a single molecule? Hence, we observe that we can divide
thermodynamical properties roughly in two groups - firstly, properties in bulk materials, and
secondly, molecular properties. Moreover, the bulk properties certainly must be connected
to the properties of the individual molecules that form the bulk material. Therefore, we
must have a way to link together these different properties together - which is what the
broad field of statistical thermodynamics achieves.

Give an example of molecular property determining some bulk property:

2 Why statistical?
Macrostate - bulk state with
fixed properties.

Microstate - molecular or
atomic arrangement in states.

To explain why the field is called statistical thermodynamics let’s start by considering an
example. Let’s consider and ideal isolated system with fixed internal energy (U), volume (V),
and number of particles (N), where these parameters define all thermodynamical parameters
of the bulk system. We call state with these fixed values as a macrostate.

However, as stated earlier, the bulk parameters by itself does not contain any information
of how atoms or molecules behave on microscopical level. From quantum mechanics (finer
details are beyond the scope) we can state that each molecule has it’s associated energy
levels, and it is possible for molecules to be arranged in the energy levels in many different
ways. Any specific arrangement of the particles in the energy levels is called microstate.

Fixing energy levels fixes volume,
hence with given conditions we
also define a macrostate, which
has multiple microstates

Now we can dive in to the world of statistics and consider a miniature toy system. In this
case we consider that we have a set of energy levels with energies 0, 1, 2, 3, ... in arbitrary
units. Also, let’s say we have 2 distinguishable particles (A and B), and the total energy of
system is fixed at 2 energy units.
Under such conditions we obtain following microstates:
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Now consider the case of 3 particles A, B and C with �xed energy of 3 units: Do not confuse these levels with
molecular orbitals, we can fit
more than two particles in each
level!
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Drawing all the energy levels
explicitly might not be the best
idea now...

Consider a set of levels with energies 0, 1, 2, 3, 4, 5 and 6 units. Show that for 4 distinguishable
particles with total energy of 6 units, the number of microstates W is 84. What is the number of
microstates if we double the spacing of energy levels (0, 2, 4...)?

Drawing the levels and filling with particles seems fun and all, but now let’s consider why
we do that and what interesting results does that yield.

3 Postulates of Statistical Thermodynamics
1. Probability of observing specific microstate is 1/W , where W is the total number of

microstates.

2. Entropy of isolated system is given by S = kB lnW .

Now let’s explain what the postulates imply in the case of the last exercise.

Let’s consider an ideal gas. In such case the available energy levels are due to the translation
of gas molecules. As a good approximation we can consider the particle energy levels with
particle in a box model. Therefore, the we can write energy as En = n2h2

8ma2 with n = 1, 2, 3, ...,
which yields us discrete energy levels as shown in previous diagrams. What this gives us is
that increasing the box size, decreases the spacings of energy levels (a increases, respective
En decreases). Hence if we now consider an ideal gas in a box, and now we increase the
volume of the box, from thermodynamics we clearly expect the gas to expand and fill the
whole box. This is an irreversible process. How can we rationalise this from statistical
thermodynamics point of view?
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Increase box
Wi

Irreversible expansion

Wf

Let’s say before box expansion we have Wi microstates available to the system, and after
the expansion we have Wf microstates. From previous exercise we saw that the number
of microstates is related to the spacing of energy levels, in a way that the closer the spac-
ings there are, the more microstates there are. Combining this with our knowledge, that
increasing box size, we decrease the spacing between energy levels, we can state that Wf

> Wi. Since the first postulate states, that each microstate is equally probable, the system
will spend more time in final system’s microstates (that is, it is conceivable that the ideal
gas will at some point will come back to inital state, but it is very unlikely). In general this
means that systems evolve into state with maximum number of accessible microstates, and
hence the existence of irreversible processes are explicable using first postulate of statistical
thermodynamics.

Now using second postulate we can introduce numerical values to aid the understanding.
Again consider a system that has Wi inital microstates and Wf microstates after the pro-
cess. From first postulate we can note that the probability of finding system in initial state
Pi is proportional to Wi, and similarly, Pf ∝Wf . From second postulate we can express Wi

and Wf in terms of entropy, t.i. Wi = exp(Si/kB) and Wf = exp(Sf/kB). And so we can
now calculate the probability of finding system in initial state, as opposed to final state:

Pi
Pf

=
Wi

Wf
=

exp(Si/kB)

exp(Sf/kB)
= exp(−∆S/kB)

Mole of ideal gas was expanded to twice of the initial volume, calculate the probability of �nding
the system in initial states Entropy change due ideal gas

expansion is given by
nR ln (Vf/Vi)

4 Preparatory problem 5
Now having established postulates of statistical thermodynamics and arising results, we can
move on to discuss preparatory problem.

As previously we consider a system such that both energy and particles are conserved, and
the temperature is fixed. We assume that particles behaves like ideal gas. Now, however,
instead of considering energy levels, we can consider distribution of molecules in a box with
diving wall. In this case let’s call numer of microstates W with n molecules in first chamber
and m molecules in second chamber as W (n,m).

Figure 1: Example of W (4, 6).

We can calculate the number of microstates in given arrangement using combinatorics, more

specifically W (n,m) = n+mCn =
(n+m)!

n!m!
(note that formula is symmetric with respect

to n and m)
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Aside - binomial distribution and factorial approximations

Figure 2: Pascal triangle up to N = 10.

In general the factorials grow quite rapidly, as such if we deal with systems that have more
than few molecules, it is wise to use approximations, that might reduce work with larger
numbers. In this case we can approximate factorials with n! ≈

√
2πn

(n
e

)n
. However,

whenever we use approximations, care must be taken to see whether it is appropriate to use
it. From Figure 3 we observe, that the error using approximation at small values (n < 10)
is rather large, so the approximation should not be used.

Figure 3: Comparison between factorial and approximated factorial.

Calculate W (40, 60) and W (50, 50) to two signi�cant digits. Make sure to write down general
form to calculate W(n, m) with
approximation, it will be useful
for later.

Check that
W (40, 60) < W (50, 50), which
should be expected from previous
discussion.

4 Statistical Thermodynamics



Now consider that the dividing boundary is removed, meaning that molecules are free to
move in all box. From the first statistical thermodynamics postulate we expect that the
time system spends in microstate is proportional to W (n,m).

Calculate arrangement (n∗, N − n∗) with highest probability of occurrence for N = 10, 100 and
the corresponding probabilities to observe such state.

Calculate the probability of observing a state in which n∗ is in the range n∗ − 0.02N ≤ n∗ ≤
n∗ + 0.02N for N = 10, 100.

Figure 4: Probability distribution for N = 10, 50, 100.
Shaded area is the range n∗ − 0.02N ≤ n∗ ≤ n∗ + 0.02N .

Note the more narrow distribution as N increases.
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Next, let’s revisit the entropy of gas expansion. However, now we will assume that mi-
crostates are formed by molecules filling small subsections ∆V . In this case given available
volume V1 the total number of microstates is given byWA = V1/∆V . Similarly we can write
number of microstates for different volume as WAB = V2/∆V . Thus:

WAB

WA
=
V2
V1

Now let’s consider chamber A filled with n moles of gas molecules, while chamber B is empty
(state 1). Afterwards, we remove the dividing boundary and let gas A expand spontaneously
throughout the entire container (state 2) at a constant temperature. WA

V1

Isothermal expansion

WAB

V2

Express the change in entropy ∆S = S2 − S1 in terms of the gas constants R, V1 and V2.

Calculate the di�erence in entropy for an isothermal expansion of the two-chamber system
described above when the chamber A is initially �lled with oxygen molecules (0.30 mol). Use
V1 = 0.10 m3 and V2 = 0.40 m3.

Now instead we can consider mixing of two different gases in the same volume as shown in
margin.

Does the answer make sense?
Consider the count of
microstates before and after.

Calculate the di�erence in entropy associated with the mixing process.
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Next we can consider mixing of two kinds of gas molecules, α (nα moles) and β (nβ moles),
which are separately filled into chambers A (volume VA and B (volume VB, respectively, at
a temperature T and a pressure P (State 1). Let State 2 reperesent the complete mixture
of the gas molecules after removing the boundary wall. See margin for ilustration.
Express the entropy change ∆S = S2 − S1 from State 1 to State 2 in terms of R, nα and nβ .

Instead consider a case where instead of gas β chamber B is �lled with gas α (nβ moles) (State 1),
before the boundary wall is removed (State 2). Calculate the entropy di�erence from State 1 and
State 2.

Next, additionally to only considering ideal gases, we can move on to discuss entropy aris-
ing from molecular orientation in a crystal. The most prominent example of this is residual
entropy, which can be observed in multiple crystals.

According to the third law of thermodynamics, the entropy of a pure and perfect crystal
approaches zero as the absolute temperature approaches zero. However, in a real molecular
crystal, the molecules may not be completely aligned at low temperatures. Thus, even when
the absolute temperature approaches zero, the crystal can retain nonzero entropy value.
This is called residual entropy, and can be detected as a difference in experimentally mea-
sured entropy calculations and statistical thermodynamics predictions.

For example, because carbon monoxide (CO) is a heterogeneous diatomic molecule, CO
molecules have a definite orientation in the CO crystal. Picture in margin illustrates disor-
dered and completely ordered CO crystal. Because CO molecules can exhibit two different
orientations in the crystal, the residual entropy per mole if the molecular orientations are
completly random in the crystal would be: S = kB ln 2NA = R ln 2 = 5.7 J K−1 mol−1

In OCS molecule residual entropy is observed to be 0, explain why that might be the case.
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Every methane (CH4) molecule in crystal is surrounded by four methane molecules in a tetragonal
fashion. Calculate the molar residual entropy of isotopically labelled methane, H3CD, when the
molecules are completely randomly oriented.

More sophisticated case is when considering residual entropy of ice. Arrangement of water
molecules in an ice crystal is shown in a margin. In this case we have to consider the
so-called ’ice-rules’:

1. Each hydrogen atom must be located between two adjacent oxygen atoms.

2. Two of the four hydrogen atoms that surround each oxygen atom must be positioned
closer to that oxygen than to the neighbouring oxygen atoms, while the other two
hydrogens should be located closer to one of the neighbouring oxygen atoms.

Now let us estimate the molar residual entropy of ice using the following procedure.
There are two stable sites for a hydrogen atom between two adjacent oxygen atoms. Calculate
the number of possible con�gurations of hydrogen atoms in a crystal composed of 1 mole of water
(NA molecules) without any constraints of the ice rules

Calculate the number of possible con�gurations for four hydrogen atoms around the central
oxygen atom in margin picture

Some of the con�gurations calculated in previous point such as H3O+, in which three protons are
arranged closest to one oxygen atom, violate ice rules. List all chemical species that break the ice
rules and calculate the number of con�gurations for each species. Then, calculate the number of
con�gurations that satisfy the ice rules.

Based on these considerations, calculate the molar residual entropy when the orientations of
water molecules is completely random in ice.
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It is also possible to consider (albeit useless in practical cases) residual entropy in cases of same
element’s di�erent isotopes. Let’s consider chlorine gas (Cl2) and assume that it consists of 37Cl
(25%) and 35Cl (75%). What are the di�erent isotope species in the chlorine gas and at what
abundancies?

Let’s now consider a crystal made out of 16 Cl2 molecules. Consider how many ways there are in
arranging each isotopic species in this crystal. Now consider a mole of Cl2 gas, and calculate how
many microstates there are in random crystal. What is the expected residual entropy?
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